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This paper studies the evolution mechanism of surface rippling in polymer nanofibers under axial stretching.
This rippling phenomenon has been detected in as-electrospun polyacrylonitrile in recent single-fiber tension
tests, and in electrospun polyimide nanofibers after imidization. We herein propose a one-dimensional nonlin-
ear elastic model that takes into account the combined effect of surface tension and nonlinear elasticity during
the rippling initiation and its evolution in compliant polymer nanofibers. The polymer nanofiber is modeled as
an incompressible, isotropically hyperelastic Mooney-Rivlin solid. The fiber geometry prior to rippling is
considered as a long circular cylinder. The governing equation of surface rippling is established through linear
perturbation of the static equilibrium state of the nanofiber subjected to finite axial prestretching. The critical
stretch and ripple wavelength are determined in terms of surface tension, elastic property, and fiber radius.
Numerical examples are demonstrated to examine these dependencies. In addition, a critical fiber radius is
determined, below which the polymer nanofibers are intrinsically unstable. The present model, therefore, is
capable of predicting the rippling condition in compliant nanofibers, and can be further used as a continuum
mechanics approach for the study of surface instability and nonlinear wave propagation in compliant fibers and
wires at the nanoscale.
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I. INTRODUCTION

Ultrathin polymer fibers with diameter ranging from 1 nm
to several micrometers have been produced extensively by
the electrospinning technique �1,2�. Due to their high surface
area to volume ratio, high tensile strength, controllable diam-
eter, surface morphology, and microstructure, as well as low
processing cost, electrospun nanofibers are finding rapidly
increasing applications as a novel class of one-dimensional
�1D� nanomaterials, which include protective clothing �3,4�,
fine filtration �5,6�, nanocomposites �7�, templates for pro-
ducing metallic nanowires and carbon nanotubes �8,9�, pre-
cursors for synthesizing carbon nanofibers �10,11�, biomedi-
cal engineering and technologies �e.g., scaffolds for tissue
growth �12,13� and drug delivery systems �14��, nanosensors
and nanoelectromechanical systems �15,16�, and microde-
vices �17�, among others. Continuous nanofibers in an elec-
trospinning process can be collected in the form of porous
nonwoven mats or aligned nanofibrous films with the aid of
auxiliary electrical fields �18�. To date, over 200 synthetic
and natural polymers have been electrospun successfully into
continuous nanofibers. The number of research publications
on electrospinning techniques and the resulting fibers has
doubled annually in recent years. In addition, several popular
review articles have been dedicated to the research progress
in nanofiber manufacturing, mechanical characterization,
alignment techniques, and potential applications in broad
fields �14,19–24�.

As in conventional bulk structural and functional materi-
als, the mechanical properties of nanofibers �e.g., modulus,
tensile strength, yielding property, etc.� are fundamental to
their environmental response and expected functionalities
when nanofibers are integrated into nanocomposites and mi-
crostructural components. Nanofibers with high strength and
high toughness are always desired in view of their end use
�7�. In addition, fibrous materials at the nanoscale may ex-
hibit unique mechanical behaviors that are essentially differ-
ent from those of their bulk counterparts. Such unique prop-
erties may further influence the deformation, dynamics,
stability, adhesion, contact, friction, wetting, and global me-
chanical response of the resulting nanofilamentary materials
and nanodevices �25–30�. In recent years, substantial effort
has been devoted to understanding the mechanical behavior
of individual nanofibers fabricated by electrospinning
�31–38�. Among these, atomic force microscope �AFM�
serves as a typical instrument and has been employed by
several research groups for the mechanical characterization
�e.g., axial modulus determination� of electrospun nanofibers
�32–35�. To date, three AFM-based testing methods have
been developed: the AFM-based axial tension, three-point
bending, and nanoindentation tests. In a typical AFM-based
axial tension test, one end of the nanofiber segment is fas-
tened with adhesive onto a substrate �e.g., a silicon wafer�,
while the other end is tethered to the AFM tip �34�. The
microscopic tensile force is exerted through the motion of
the AFM tip. In the case of a micro three-point bending test,
the fiber segment is clamped at two ends with adhesive onto
a substrate with periodic gratings �32,33,35�. A lateral bend-
ing force is exerted through the AFM tip at the midspan of
the nanofiber segment between neighboring supports. Fur-
thermore, the axial modulus of nanofibers can also be mea-
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sured by means of nanoindentation, similarly to the charac-
terization of thin films. After each test, a force vs
displacement or deflection diagram is recorded and the axial
modulus can be extracted. Moreover, the axial modulus of
nanofibers can also be estimated by measuring the resonant
frequencies of a pair of microcantilevers bridged by the
nanofiber segments under consideration �36�.

Nevertheless, the ultimate tensile strength and the strain
to failure of nanofibers are arduous to determine using AFM.
Indeed, the best way to characterize the mechanical proper-
ties of a nanofiber is by direct testing a single nanofiber
segment on a microtension tester installed with a high-
resolution load cell. Newly available high-resolution micro-
tensile testers such as the Nano Bionix and Nano UTM pro-
vided by MTS and microelectromechanical-systems-
�MEMS-� based microtensile testers �37,38� make this
possible. Presently, full-range highly resolved stress-strain
diagrams of nanofiber tension tests can be recorded. For in-
stance, the Nano Bionix has been employed successfully for
a uniaxial tension test of polycaprolactone fibers with diam-
eters of �1 �m �39�. A similar high-resolution microtensile
tester was also produced and utilized recently to characterize
the modulus and tensile strength of high-strength, high-
toughness polyimide �PI� nanofibers with diameters of
�300 nm �31�. In these tension tests, the tensile force is
extremely low, ranging from a few millinewtons to a few
micronewtons. Due to the very low tensile force, MEMS-
based microtensile testers developed recently may provide an
alternative for feasible and accurate measurements �37,38�.

The above-referenced microtension tests have disclosed
two unique behaviors of electrospun polymer nanofibers that
are essentially different from those of their large-diameter
and bulk counterparts. The first unique behavior is an abrupt
increase in axial modulus displayed by a polymer nanofiber
when its diameter falls below a certain value �35,40,41�. For
instance, polystyrene nanofibers demonstrate a rapid increase
of the axial modulus when their diameter is below �500 nm;
�40� while poly�2-acrylamido-2-methyl-1-propanesulfonic
acid� nanofibers sharply increase their axial moduli from
�300 MPa at the diameter of �110 nm up to �2.0 GPa at
the diameter of �55 nm �40�. Surface tension may possibly
contribute to such an increase in axial modulus according to
a recent continuum mechanics calculation �28�; however, this
explanation is insufficient when trying to understand such
fiber behavior occurring below the critical diameter. There-
fore, other potential factors need to be further explored. If
one considers an electrostatic stretching in the mesojet dur-
ing the electrospinning process, the observed remarkable size
effect can be attributed to a gradual ordering of the micro-
structure as a function of fiber diameter �35,41,42�. As a
matter of fact, recently x-ray diffraction has shown that there
is only a mild monotonic increase in the crystallinity and
orientation of the crystallites inside the polymer nanofibers
as a function of fiber diameter �41�. As a result, such a mild
increase would not be sufficient to account for the observed
exceptional increase in the axial modulus. In addition, the
above studies further indicated that the average size of crys-
tallites ��4 nm� was largely independent of the nanofiber
diameter and therefore the crystallinity remained nearly con-
stant in the range of fiber diameter under consideration. To

explore this size effect in the axial tensile modulus of poly-
mer nanofibers, one promising physical mechanism �42� was
proposed recently, based on the concept of the supramolecu-
lar structure of the amorphous phase, which consists of ori-
ented fragments of the polymer chains. Such supramolecular
structures might be formed due to the confinement of poly-
mer nanofibers when the fiber diameter decreases below a
certain value. According to this approach, a preliminary es-
timate was made in predicting the transition fiber diameter,
below which the polymer nanofibers may exhibit a notice-
able size effect in their axial modulus �41�. Yet this approach
still leaves an open problem of the likely power-law growth
of the axial modulus with decreasing fiber diameter below
that certain value.

The second unique behavior is the surface rippling in
compliant polymer nanofibers subjected to axial stretching.
Such surface instability at the nanoscale was first detected in
recent MEMS-based microtension tests of as-electrospun
polyacrylonitrile �PAN� nanofibers �37,38�. In such tension
tests, periodic ripples were detected on the fiber surfaces
when the axial stretch was up to a certain level as shown in
Fig. 1 �37,38�. It was also discovered during the single-
nanofiber tension tests that the PAN nanofibers exhibited no
clear softening, and the strain to failure �in the sense of en-
gineering strain� was typically up to 60–130 % for the elec-
trospun PAN nanofibers with a diameter around
300–600 nm. This strain is several fold greater than that
obtained in PAN microfibers produced by drawing and dry-
jet wet spinning �37,38�. In addition, such surface ripples
were also found in other electrospun polymer nanofibers,
triggered by possible axial contraction after annealing. Fig-
ure 2 shows AFM images of the surface morphology of PI
nanofibers produced by electrospinning and subsequent imi-

(a) (b) (c)

(d)

FIG. 1. �a�, �b� Scanning electron microscope �SEM� images of
surface morphology of as-electrospun PAN nanofibers after tensile
breakage. The fiber breakage was induced by extrusion of a 45°
conic region. �c� SEM image of the fiber breakage due to the for-
mation of voids. �d� SEM image of ripples formed on PAN nanofi-
ber surfaces subjected to axial stretching �37,38�.
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dization in our recent study. For smooth PI precursor nanofi-
bers deposited on a silicon wafer in electrospinning, as
shown in Fig. 2�a�, after imidization in a nitrogen environ-
ment, surface ripples were detected. This rippling phenom-
enon may be attributed to the constrained axial shrinking
induced in the imidization process.

As a matter of fact, the formation of surface ripples on
PAN nanofibers is essentially due to a surface instability trig-
gered by the combined effect of surface tension and nonlin-
ear elasticity of the polymer nanofibers. Within the frame-
work of nonlinear elasticity �43,44�, necking and surface
instability of elastic bars subjected to axial stretching have
been well studied, where the effect of surface tension or
energy was excluded due to the relatively large diameter and
high elastic modulus of the rods. However, at the nanoscale,
surface tension may play a crucial role in triggering the sur-
face rippling in compliant ultrathin nanofibers.

Therefore, in this study we consider the evolution mecha-
nism of surface rippling in compliant polymer nanofibers
subjected to large axial stretching. As a first approach, we
propose a simple 1D nonlinear elastic model to examine the
combined effect of surface tension and nonlinear elasticity
on ripple formation. The governing equation is established
through linear perturbation of the static equilibrium state of a
prestretched compliant nanofiber. Without loss of generality
in capturing the main features, we simplify the compliant
nanofiber as an incompressible, isotropically hyperelastic
Mooney-Rivlin solid. The critical stretch in triggering the
surface rippling and the corresponding ripple wavelength are
determined in terms of surface tension, elastic properties, and
fiber radius. Numerical examples are demonstrated to exam-
ine these dependencies. Furthermore, the present model will
be further used to explain the experimental results obtained
in recent single-nanofiber tension tests. Then the conclusions
and potential applications of the present study are summa-
rized.

II. MODEL DEVELOPMENT

Consider a compliant polymer nanofiber as an infinitely
long and thin rod made of an incompressible, isotropically

hyperelastic Mooney-Rivlin solid. In reality, polymer chains
inside a polymer fiber may have some extent of preferred
orientation and crystallinity owing to the electrostatic
stretching in an electrospinning process. For the undisturbed
stretch-free state, the imaginary configuration of the nanofi-
ber �with surface tension ignored� is assumed to be a per-
fectly circular cylinder of radius R0. For the convenience of
our discussion afterward, three configurations are adopted to
describe the motion of a material point inside the fiber, i.e.,
undisturbed stretch-free �with surface tension ignored�, pre-
stretched �with surface tension�, and current configuration
�with surface ripples�, respectively. The corresponding coor-
dinates of the material point are denoted by �R ,� ,Z�,
�r ,� ,z�, and �r̃ , �̃ , z̃�, respectively. In the following, we first
derive the solution for the prestretched state, and then estab-
lish the governing equation of a surface rippling through
linear perturbation of the prestretched state.

A. Thin solid fibers under axial prestretching

When subjected to axial uniform stretching, the axisym-
metric deformation of a prestretched fiber can be expressed
as

r = �1R �0 � R � R0�, � = � �0 � � � 2�� ,

z = �3Z �− 	 � Z � + 	� , �1�

where �1 and �3 are constants, corresponding to the trans-
verse and longitudinal stretches, respectively. The deforma-
tion gradient of the above deformation is

F = � �r/�R �1/R��r/�� �r/�Z

r��/�R �r/R���/�� r��/�Z

�z/�R �1/R��z/�� �z/�Z
� = ��1 0 0

0 �1 0

0 0 �3
� .

�2�

The material incompressibility of the polymer fiber requires
�1 and �3 satisfying

FIG. 2. �Color online� AFM images of surface morphology of �a� as-electrospun PI precursor nanofiber and �b� PI nanofiber after
imidization �fiber diameter �250 nm�.
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�1
2�3 = 1. �3�

The resulting left Cauchy-Green tensor B and its inverse are,
respectively,

B = FFT = diag��1
2,�1

2,�3
2�, B−1 = diag��1

−2,�1
−2,�3

−2� .

�4�

The scalar invariants of B are

I1 = 2�1
2 + �3

2 = 2�3
−1 + �3

2, I2 = 2�3 + �3
−2, I3 = 1. �5�

The constitutive law of the compliant polymer nanofiber is
assumed to obey the equation for a general incompressible,
isotropically hyperelastic Mooney-Rivlin solid, which can be
expressed in terms of the Cauchy stress tensor vs B:

T = − pI + 2c1B + c2B−1, �6�

where p is the hydrostatic pressure, and c1 and c2 are two
independent material parameters. In the special case of c2
=0 and c1 half the shear modulus, a material satisfying the
constitutive relation �6� is called a neo-Hookean solid. In
terms of stress components, it reads

Trr = T�� = − p + 2c1�1
2 + c2�1

−2 = − p + 2c1�3
−1 + c2�3,

�7�

Tzz = − p + 2c1�3
2 + c2�1

4 = − p + 2c1�3
2 + c2�3

−2, �8�

Tr� = Trz = T�z = 0. �9�

Furthermore, in spatial coordinates, the equilibrium equa-
tions of the axisymmetrically deformed fiber can be written
as

�Trr

�r
+

Trr − T��

r
= 0, �10�

�T��

��
= 0, �11�

�Tzz

�z
= 0. �12�

In the above, two traction boundary conditions �BCs�
have been triggered. At the fiber surface, the surface tension
leads to uniform compression radically, i.e.,

Trr = − 
/r0, �13�

where 
 �N/m� is the surface tension of the amorphous poly-
mer fiber, which is assumed to be independent of the fiber
radius and applied axial stretch in this study, and r0 is the
fiber radius in the current configuration after deformation. In
addition, along the fiber axis, axial force equilibrium requires

P = 2��
0

r0

rTzzdr + 2�r0
 , �14�

where P is the axial tensile force resultant. The relationship
between P and the axial stretch �3 of the fiber can be deter-
mined by solving �10�–�12� under traction conditions �13�
and �14� such that �28�

P = �r0
2��3

2 − �3
−1��2c1 − c2�3

−1� + �r0
 . �15�

The above relation can also be expressed in terms of the
radius of a stretch-free fiber �with surface tension ignored�
by applying the deformation relation r0=�1R0=R0�3

−1/2:

P = �R0
2��3 − �3

−2��2c1 − c2�3
−1� + �R0
�3

−1/2. �16�

B. Rippling of thin polymer fibers under axial stretching

Let us now consider the 1D rod equation for a small dis-
turbance superimposed on the prestretched state of the poly-
mer nanofiber in the condition of axisymmetric deformation.
For small disturbance, the coordinates of a material point in
the current configuration can be expressed as

r̃ = ��1 + f�Z��R �0 � R � R0�, �̃ = � �0 � � � 2�� ,

z̃ = �3Z + g�Z� �− 	 � Z � + 	� , �17�

where f�Z� and g�Z� are two small disturbance functions
satisfying the BCs �13� and �14�. The corresponding defor-

mation gradient matrix F̃ and the left Cauchy-Green tensor B̃
can be determined as

F̃ = ��1 + f 0 fZR

0 �1 + f 0

0 0 �3 + gZ
� , �18�

B̃ = F̃F̃T = ���1 + f�2 + �fZR�2 0 fZR��3 + gZ�
0 ��1 + f�2 0

fZR��3 + gZ� 0 ��3 + gZ�2 � .

�19�

As a result, the three scalar invariants of B̃ are

I1 = 2��1 + f�2 + �fZR�2 + ��3 + gZ�2, �20�

I2 = ��1 + f�2���1 + f�2 + �fZR�2 + 2��3 + gZ�2� , �21�

I3 = ��1 + f�4��3 + gZ�2. �22�

Material incompressibility of the polymer fiber �22� leads to

��1 + f�2��3 + gZ� = 1. �23�

Relation �23� implies that f and g are correlated, and they
can be determined through the variational principle applied
onto the potential energy of the entire fiber. For the incom-
pressible, isotropically hyperelastic Mooney-Rivlin solid un-
der consideration, the corresponding strain energy density is
defined as �45�

e = c1�I1 − 3� + c2�I2 − 3� , �24�

where I1 and I2 are, respectively, the first and second invari-

ants of the left Cauchy-Green tensor B̃ as given in �20� and
�21�, and c1 and c2 are two material parameters of the
Mooney-Rivlin solid. Thus, the potential energy functional
� of the compliant nanofiber subjected to axial stretching is
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� = �R0
2�

L

e dZ + 2�R0
�
L

��1 + f���3 + gZ�dZ

− P�
L

��3 + gZ − 1�dZ . �25�

The three terms in �25� are the contributions due to elastic
strain energy, surface energy, and work done by the axial
tensile force P, respectively. In addition, in relation �25� ma-
terial incompressibility has been taken into account, and the
integration with respect to Z runs over the entire length of the
fiber segment.

By substituting �20�–�24� into �25� and then triggering the
variational principle �27� on �25�, a second-order nonlinear
ordinary differential equation �ODE� can be obtained as

R0
2�1 + c2/c1�1

2�fZZ − 	6c2/c1�1
2 + 2 + 2
/�c1R0��1

−3

− 3�P/�c1�R0
2� − 2c2/c1��1

−4 + 10�1
−6
f

− 	2c2/c1�1
3 + 2�1 − 
/�c1R0��1

−2 + �P/�c1�R0
2�

− 2c2/c1��1
−3 − 2�1

−5
 = 0. �26�

In the case of linear perturbation as used for the study of
rippling initiation, f in �26� is a small disturbance from the
prestretched state. By eliminating the higher-order terms of f
and fZ in �26�, a second-order linear ODE can be extracted
which governs the rippling initiation, i.e.,

AfZZ + Bf + C = 0. �27�

Here, the coefficients A, B, and C in �27� are related to the
surface energy, elastic properties, fiber geometry �radius�,
and applied prestretch such that

A = R0
2�1 + c2/c1�3

−1� , �28�

B = − �2 + 6c2/c1�3
−1 + 2
/�c1R0��3

3/2 − 3P/�c1�R0
2��3

2

+ 6c2/c1�3
2 + 10�3

3� , �29�

C = − �2c2/c1�3
−3/2 + 2�3

−1/2 − 
/�c1R0��3 + P/�c1�R0
2��3

3/2

− 2c2/c1�3
3/2 − 2�3

5/2� , �30�

where material incompressibility �3� has been implied.
As a matter of fact, surface rippling in a compliant nanofi-

ber implies the existence of periodical solution to Eq. �27�.
This yields the corresponding characteristic equation:

AfZZ + Bf = 0. �31�

Assume the periodic solution to �31� in the following form:

f�Z� = A0 exp�ikZ� , �32�

where A0 is the complex amplitude of surface disturbance,
and k is the wave number. Therefore, substituting �32� into
�31� leads to

k = �B/A , �33�

which is a positive number for a physically meaningful rip-
pling surface. As a result, the condition for surface rippling
of compliant rubbery polymer nanofibers is

B/A � 0, �34�

and the corresponding ripple wavelength can be expressed as

� = 2�/k . �35�

Consequently, relation �34� as well as �15�, �28�, and �29�
determine the rippling condition of compliant polymer
nanofibers subjected to axial stretching.

III. NUMERICAL EXAMPLES OF RIPPLING
DEPENDENCY AND DISCUSSIONS

A. Critical condition of surface rippling in compliant polymer
nanofibers

Based on the rippling condition �34�, the critical axial
stretch, beyond which rippling happens, can be determined
by letting

B = 0, �36�

i.e.,

2 + 6c2/c1�3
−1 + 2
/�c1R0��3

3/2 − 3P/�c1�R0
2��3

2

+ 6c2/c1�3
2 + 10�3

3 = 0, �37�

where P is the axial force resultant given in �15�. It can be
proved that Eq. �37� may have one, two, or no real roots
depending upon the combined effect of surface tension, elas-
tic properties, and fiber radius. For typical rubbery hyper-
elastic materials, it guarantees that A�0 in �28�. Thus, it is
expected that for sufficient low loading rate and large fiber
diameter, compliant polymer fibers may have only a single
necking that happens at B�0 in �29�. In such a case, the
final fiber breakage takes place at the necking locus as com-
monly observed in uniaxial tension tests of polymer fibers. In
addition, the prestretched polymer fiber under consideration
can be understood as follows: the fiber is deformed to a
given prestretch in a relatively short time interval and then
this constant prestretch is sustained.

B. Critical radii for rippling in compliant polymer nanofibers

Let us further consider the surface elastic instability of
compliant polymer nanofibers in the stretch-free state �i.e.,
�3=1�. By setting �3=1 in relations �16� and �37�, the criti-
cal condition B=0 leads to the critical fiber radius RC:

RC = 
/�12�c1 + c2�� . �38�

Correspondingly, the derivative of B in �29� with respect to
R0 in the stretch-free state gives

� dB

dR0
�

�3=1
= −




c1R0
2 
 0. �39�

The above relation indicates that for R0
RC, B�0 holds in
the stretch-free state ��3=1�, i.e., below the critical fiber ra-
dius RC, rippling can be triggered even without external
stretch. In this case, the compliant fibers are intrinsically un-
stable and therefore cannot be physically produced in reality
according to this model. Thus, an initially stable polymer
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nanofiber at the stretch-free state ��3=1� must satisfy B
0,
i.e., R�RC according to �38� and �39�. Consequently, if solv-
ing R0 with the condition B=0 in �29� and then considering
the stationary point satisfying dR0 /d�3=0, one may obtain
the upper limit radius of surface rippling. Beyond this radius,
rippling could not happen.

It needs to be mentioned that, for the convenience of the
above derivation, we have constrained the material in this
study to be a general incompressible, isotropically hyperelas-
tic Mooney-Rivlin solid. Such a material model is a feasible
approach to handle many rubbery polymers analytically. For
as-electrospun PAN nanofibers, our recent experiments indi-
cated that these ultrathin fibers were extremely compliant
with very large strain to failure �around 150%� and very
large residual plastic strain compared to their counterparts of
microextrusion fibers and cast bulk polymers. Nevertheless,
in the study of surface rippling, the Mooney-Rivlin material
model provides a good approximation by taking into account
this large axial stretch and capturing the main features during
the rippling process.

Hereafter, we demonstrate some numerical examples to
examine the rippling dependencies upon fiber radius and
prestretch. The elastic constants of the polymer nanofiber,
c1 and c2, are selected in the range of typical vulcanized
rubber compounds �46� such that c1=0.1–0.31 MPa, c2
=−0.1 MPa, and the surface tension 
=0.025–0.1 N /m.
Figure 3 shows the variation of the upper and lower critical
axial stretches needed to trigger the rippling for different
fiber radii with varying surface tension. By examining the
parameters A and B in �28� and �29�, it is found that coeffi-
cient A is always positive, while B is a convex function with
respect to the axial stretch �3. As a matter of fact, the physi-
cally meaningful �3 requires B to be positive, and this leads
to the upper and lower critical axial stretches for a given
fiber radius and given material properties, as illustrated in
Fig. 3. From Fig. 3, one can observe that the upper critical
axial stretch decreases with either increasing fiber radius or
decreasing fiber surface tension. Meanwhile, the lower criti-
cal axial stretch increases with increasing either the fiber

radius or the surface tension. In addition, Fig. 3 further im-
plies that, for a rubbery nanofiber with diameter below a
certain value, the fiber may be naturally unstable as predicted
in �38�. It can be observed in Fig. 3 that the upper and lower
critical axial stretches may overlap at a certain fiber radius.
Beyond this critical radius, surface rippling could not hap-
pen. As a result, for a given axial prestretch between the
upper and lower critical limits, surface rippling may happen
according to the present rippling model. The upper and lower
limits of critical stretch also determine the range of ripple
wavelength of polymer nanofiber rippling under axial
stretching.

Furthermore, Fig. 4 indicates the variation of the ripple
wavelength as a function of fiber radius with varying pre-
stretch between the two upper and lower limits of critical
stretch. One can see that the ripple wavelength increases with
the increase of either fiber radius or prestretch for given elas-
tic properties and surface tension of the fiber material. For
the purpose of comparison between the present model and
experimental measurements, the ripple wavelengths and cor-
responding fiber radii of two types of as-electrospun PAN
nanofibers available in the literature �37,38� are plotted in
Fig. 4. One can see that the ripple wavelength of the PAN
nanofibers as detected in single-fiber tension tests �37,38�
�see Fig. 1� are located within the wavelength range as pre-
dicted in the present model. Indeed, the present continuum
mechanics model reveals the rippling mechanism in polymer
nanofibers, i.e., the surface rippling phenomenon can be ap-
proached within the framework of surface instability of hy-
perelastic solids. Moreover, the present model can be further
refined to take into account other potential factors such as
plasticity, viscoelasticity, material compressibility, elastic an-
isotropy, and dynamics.

IV. CONCLUDING REMARKS

A 1D phenomenological nonlinear elastic model has been
developed which can describe the mechanism of surface rip-
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FIG. 3. �Color online� Variation of the upper and lower critical
stretches vs the fiber radius for cases of varying surface tension.

FIG. 4. �Color online� Variation of the ripple wavelength vs the
fiber radius for cases of varying prestretch. �Inserted symbols � are
the experimental results based on single-fiber tension test �37,38�.�
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pling in compliant polymer nanofibers subjected to large
axial stretch. Based on the assumption of a general incom-
pressible, isotropically hyperelastic Mooney-Rivlin solid, the
present model presented reasonable scaling properties of rip-
pling dependencies upon the surface tension, elastic proper-
ties, fiber radius, and axial pre-stretch. It can be seen in Fig.
3 that, for polymer fibers of large diameter, rippling may not
happen since the upper and lower critical stretches tend to
intersect at a certain fiber diameter. In this case, the tensile
failure of the polymer fiber is necking-related breakage, as
commonly observed in conventional polymer fibers. In addi-
tion, the predictions given by the present model can be vali-
dated by experimental results obtained in recent single-fiber
tension tests.

The emphasis should be brought to the point that the ac-
tual ripples formed in electrospun polymer nanofibers have
significant plastic deformation in a monotonic axial tension
test. Such plastic deformation makes it possible to detect the
surface ripples by means of a scanning electron microscope
or AFM after unloading. The explanation of such an effect on

the rippling initiation remains open. Therefore, further re-
finement of the rippling model is desired, and needs to in-
clude the material plasticity, viscoelasticity, compressibility,
and elastic anisotropy. A more detailed approach is expected
to provide in-depth understanding of the surface rippling in
ultrathin compliant polymer fibers. In addition, pure nonlin-
ear numerical methods �e.g., the finite-element method� can
be adopted to capture the entire evolution process of surface
rippling and relevant effects of the control parameters. Con-
sequently, the present model discloses the means for devel-
oping nonlinear dynamic models important for the analysis
of wave propagation in polymer nanofibers that are poten-
tially required for the development of nanofiber transducers,
sensors, and other applications.
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